Integral Fourier transforms and the integral Hodge conjecture for one-cycles on abelian varieties

نویسندگان

چکیده

We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, Jacobian of smooth projective curve over numbers satisfies one-cycles. The main ingredient lift Fourier transform to Chow groups. Similarly, we Tate separable closure finitely generated field. Furthermore, varieties satisfying such are dense in their moduli space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge cycles on abelian varieties

This is a TeXed copy of – Hodge cycles on abelian varieties (the notes of most of the seminar “Périodes des Intégrales Abéliennes” given by P. Deligne at I.H.E.S., 1978–79; pp9– 100 of Deligne et al. 1982). somewhat revised and updated. See the endnotes1 for more details.

متن کامل

Some Remarks on the Hodge Conjecture for Abelian Varieties

Let X be a smooth complex projective variety of dimension g. A Hodge class of degree 2d on X is, by definition, an element of H(X,Q)∩H(X). The cohomology class of an algebraic subvariety of codimension d of X is a Hodge class of degree 2d. The classical Hodge conjecture states that any Hodge class on X is algebraic, i.e., a Q-linear combination of classes of algebraic subvarieties of X. Lefsche...

متن کامل

An Inductive Approach to the Hodge Conjecture for Abelian Varieties

Let X be a smooth complex projective variety of dimension g. A Hodge class of degree 2d on X is, by definition, an element of H(X,Q)∩H(X). The cohomology class of an algebraic subvariety of codimension d of X is a Hodge class of degree 2d. The original Hodge conjecture states that any Hodge class on X is algebraic, i.e., a Q-linear combination of classes of algebraic subvarieties of X. Lefschet...

متن کامل

Positive-definiteness, Integral Equations and Fourier Transforms

We show that positive definite kernel functions k(x, y), if continuous and integrable along the main diagonal, coincide with kernels of positive integral operators in L2(R). Such an operator is shown to be compact; under the further assumption k(x, x) → 0 as |x| → ∞ it is also trace class and the corresponding bilinear series converges absolutely and uniformly. If k1/2(x, x) ∈ L1(R), all these ...

متن کامل

Bounds for Torsion on Abelian Varieties with Integral Moduli

We give a function F (d, n, p) such that if K/Qp is a degree n field extension and A/K is a d-dimensional abelian variety with potentially good reduction, then #A(K)[tors] ≤ F (d, n, p). Separate attention is given to the prime-to-p torsion and to the case of purely additive reduction. These latter bounds are applied to classify rational torsion on CM elliptic curves over number fields of degre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2023

ISSN: ['0010-437X', '1570-5846']

DOI: https://doi.org/10.1112/s0010437x23007133